您现在的位置是:首页>>课程建设>>国家课程>>学科在线>>感悟手记>>文章内容
说课不比上课轻松------6月反思 
发布时间:2016-06-28   点击:   来源:本站原创   作者:

两位数加一位数(进位)

  • 说教材

本单元主要教学100以内的进位加法和退位减法的口算与笔算,教学重点是让学生能够比较熟练地口算需要进位的两位数加一位数以及需要退位的两位数减一位数,能够正确笔算需要进位的两位数加一位数以及需要退位的两位数减一位数。本节课进位加法先教学和是整十数的(特殊情况)24+6,再教学和是非整十数的(一般情况)24+9。先教学特殊情况,突出了进位与退位的基本原理是“10个一是十”,有利于学生依据已有的数学知识理解“满10进1”。在此基础上教学计算的一般情况,就能把进位的原理、方法灵活地应用到各个具体的计算中去,逐渐形成相应的计算技能。本节课在整个计算教学体系中具有重要地位,它是学生学习多位数进位加法和四则混合运算的基础。

  • 说学情

学生已经学过20以内的进位加法(一年级上册),100以内不进位加法(本册第四单元),懂得了相同计数单位的数可以直接相加、减的算理,具有一些“凑10”和“破10”的知识经验。

三、说教学目标

基于以上对教材和学情的分析和理解,我确定了以下的教学目标:

1.在动手操作、合作交流的过程中,探索两位数加一位数进位加的口算方法,理解进位加法的原理,能正确口算和在100以内的两位数加一位数的进位加法。

2.从现实情境中发现和提出问题,能够独立探索口算方法并与同伴有条理地表述计算过程。在这一过程中培养提出问题的初步能力,发展形象思维,积累利用已有的计算知识方法学习新的口算方法的初步经验,感悟比较的数学思想方法,逐步养成独立思考的习惯。

3.在探索口算方法和解决问题的过程中,培养自主探究数学知识的兴趣,建立学好数学的信心。

四、说教学重难点

教学重点:让学生能够比较熟练地口算需要进位的两位数加一位数。

教学难点:帮助学生理解“满10进1”的算理以及相应的处理方法。

五、说教法、学法

本节课通过情境引入,引导学生根据已知条件提出不同的加法问题,在此基础上,先让学生解答,再借此教学两位数加一位数得数是整十数和非整十数的进位加法。再通过练习让学生进一步掌握进位加法的计算方法,初步形成技能。再通过解决实际问题,体会所学计算的实际价值。最后由学生出题,提高学生积极性的同时,巩固了方法,保证了练习的题量,从而形成计算技能。

六、说教学过程

课前准备:两捆小棒、20根散的小棒、作业纸

教学过程

(一)创设情景,提出问题

出示例题情景图,引导学生观察直观而生动的情境,从中收集信息,全面把握图中的信息。教师通过提问“你能提出用加法计算的问题吗?”这一问题激发学生联系已有对数量关系的认识,组合相关信息,提出数学问题。

预设:

(1)小红和小明一共有多少张画片?   怎样列式?  6+9

(2)小亮和小红一共有多少张画片?               24+6

(3)小亮和小明一共有多少张画片?               24+9

(4)三人一共有多少张画片?                     24+6+9

(二)动手操作,探究算法

学习24+6

我设计了6个环节,1.独立尝试计算。学生学习的现实起点不同,有点学生可能能够迁移不进位加法的经验进行尝试,而有的学生可能需要借助小棒进行操作,因此尝试计算时并不设定统一的教学路径,而是尊重学生学习需求的多样性。2.集体分享交流。有意先让操作小棒计算的学生进行演示,突出单根小棒捆成1捆的直观演示,确保每一个学生都能理解24+6的算理。“10根捆成一捆就是一个十”是整个操作的关键,在这个“捆”的过程中,学生积累了数学活动经验,深刻领悟了“满十进一”的意义,有利于学生数学思想方法的形成。借助学具的直观操作,突破加法进位的难点。3.回顾计算步骤。完成板书:                                   

先算4+6=10,

                                           再算20+10=30。

4.反思理解算理。重点追问:24十位上是2,为什么得数十位上是3呢?这多出来的1个十是怎么来的?板书描红十位上的2和3。回顾计算步骤和反思理解算理,是对计算方法的再认识,有助于学生切实巩固计算方法。5. 适时小结巩固。十位上的数比原来两位数十位上的数多1。这就是今天要学习的进位加法,完善板书课题。

学习24+9

先引导学生估算24+9,追问:问什么是三十多,不是二十多?初步感悟24+9和先前计算的联系与区别,经历知识发展的过程。之后放手让学生尝试计算,请学生在作业纸上的小棒图上圈一圈,再说一说先算什么,再算什么。并提醒学生思考计算的过程,有利于发展思维的条理性。让学生在练习纸的小棒图上想象操作,是直观地表示思考的过程,能强化学生对算理的理解。最后再比较相同点,使学生认识到虽然具体计算方法不同,但是都要分两步计算,且后两种方法只是计算4+9的凑十方法不同,帮助学生整体地理解算法之间的内在联系。

预设:(1)                           把4根小棒和9根小棒圈在一起,先算4+9=13,再算20+13=33。根据学生回答板书:

    

 (2)                         把4根小棒和6根小棒圈在一起,先算4+6=10,再算30+3=33。

 (3)                         把9根小棒和1根小棒圈在一起,先算9+1=10,再算23+10=33。

师:3种方法有什么相同的地方? 都是先算4+9,只是后两种方法计算4+9的凑十方法不同。

知识组块对于学生的记忆、保持和提取都是十分有益的。将两位数加一位数的典型情况进行比较,引导学生整体认识知识之间的联系和区别,有利于学生建立认知结构。

(三)巩固应用,解决问题

必要的练习对于学生掌握计算方法,发展运算能力都是十分必要的。第一题围绕计算的思考步骤进行有针对性的练习,第二题则通过题组比较,突出计算时容易出错的第一步,并体会新知识和旧知的联系,也孕伏了将新的计算转化为已有知识的思维方法指导,同时发展了学生的分析和比较能力。编题练习“请你在作业纸上写一道□□+□=□□或□+□□=□□,先自己估一估,再算一算,再四人小组交换算一算。”对于学生具有一定的挑战性,要求学生根据所学习的计算类型进行思考,练习形式的变换能够有效地激发学生的学习兴趣。

(四)全课总结,反思质疑

及时回顾本课所学内容,提升对新知的深刻认识。

说课小结:

纵观整节课,我通过创设情境提出问题,激发学生的学习积极性,向学生提供充分从事数学学科活动的机会,帮助学生在自主探索和交流的过程中真正理解和掌握基本的本节课的知识与技能、学科思想和方法,积累广泛的活动经验。

 

板书设计

 

 

(1)小红和小明一共有多少张画片? 6+9     

(2)小亮和小红一共有多少张画片? 24+6

(3)小亮和小明一共有多少张画片? 24+9

(4)三人一共有多少张画片?       24+6+9

                          两位数加一位数(进位)

24+6=30(张)       24+9=33(张)

 

 


 

先算4+6=10,                   先算4+9=13,

再算20+10=30。                 再算20+13=33。

 

 

 
附件:
    关闭窗口
    打印文档